Solutions of the Boussinesq equation subject to a nonlinear Robin boundary condition
نویسندگان
چکیده
منابع مشابه
Degenerate Convection-Diffusion Equation with a Robin boundary condition
We study a Robin boundary problem for degenerate parabolic equation. We suggest a notion of entropy solution and propose a result of existence and uniqueness. Numerical simulations illustrate some aspects of solution behaviour. Monodimensional experiments are presented. Mathematics Subject Classification (2010). Primary 35F31; Secondary 00A69.
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملUniform Decay Rates of Solutions to a Nonlinear Wave Equation with Boundary Condition of Memory Type
In this article we study the hyperbolic problem (1) where R is a bounded region in Rn whose boundary is partitioned into disjoint sets ro, rl. We prove that the dissipation given by the memory term is strong enough to assure exponential (or polynomial) decay provided the relaxation function also decays exponentially (or polynomially). In both cases the solution decays with the same rate of the ...
متن کاملBEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION
In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
متن کاملAsymptotic behaviour of solutions of quasilinear parabolic equation with Robin boundary condition
In this paper we study solutions of the quasi-linear parabolic equations ∂u/∂t −∆pu = a(x)|u|q−1u in (0, T ) × Ω with Robin boundary condition ∂u/∂ν|∇u|p−2 = b(x)|u|r−1u in (0, T ) × ∂Ω where Ω is a regular bounded domain in IRN , N ≥ 3, q > 1, r > 1 and p ≥ 2. Some sufficient conditions on a and b are obtained for those solutions to be bounded or blowing up at a finite time. Next we give the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Research
سال: 2013
ISSN: 0043-1397
DOI: 10.1029/2012wr012221